In the aftermath of the recent United Nations Rio+20 Conference on Sustainable Development, the focus of many industrialized nations is beginning to shift toward planning for a sustainable future. One of the foremost challenges for sustainability is efficient use of renewable energy resources, a goal that hinges on the ability to store this energy when it is produced and disburse it when it is needed.
A team of researchers from Drexel University’s College of Engineering has taken up this challenge and developed a new method for quickly and efficiently storing large amounts of electrical energy.
The Challenge of Renewable Energy
Electrical energy storage is the obstacle preventing more widespread use of renewable energy sources such as wind and solar power. Due to the unpredictable nature of wind and solar energy, the ability to store this energy when it is produced is essential for turning these resources into reliable sources of energy. The current U.S. energy grid system is used predominantly for distributing energy and allows little flexibility for storage of excess or a rapid dispersal on short notice.
The Drexel team of researchers is putting forward a plan to integrate into the grid an electrochemical storage system that combines principles behind the flow batteries and supercapacitors that power our daily technology.